

série

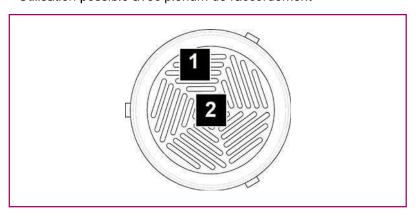
SOL

Diffuseurs de sol DSA, DSA-PR, DSA-HV et DF-CP-MT

SOMMAIRE

Diffuseurs DSA / DSA-PR / DSA-HV Types et dimensions DSA Tableaux de sélection DSA Graphiques de Sélection DSA-HV Tableaux de sélection DSA-HV Graphiques de Sélection DSA-PR Tableaux de sélection DSA-PR Graphiques de Sélection Exemple de sélection	4 5 6 7 10 11 12 13
Codification	16
Diffuseur DF-CP-MT Types et dimensions Données techniques Exemple de sélection Codification	17 18 20 22 22

Diffuseur de sol DSA



Description

Diffuseur circulaire de soufflage à jet hélicoïdal, adapté au montage sur faux planchers techniques. Les fentes du diffuseur sont conçues pour garantir la diffusion d'un jet hélicoïdal à haute induction, pour obtenir des vitesses d'air réduites et conférer un gradient de température modéré dans la zone d'occupation. Le diffuseur peut être indifféremment utilisé au sein d'installations à débit variable ou constant.

Caractéristiques

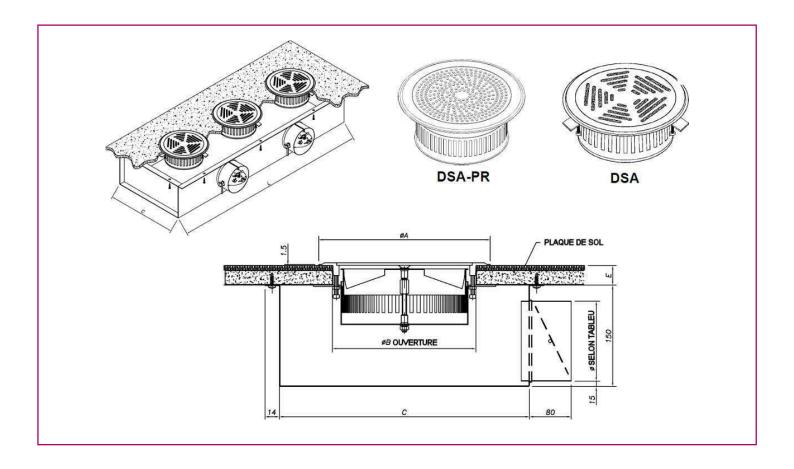
- Diffuseur circulaire tourbillonnaire de sol, avec plaque à fentes en tôle d'acier de 6 mm d'épaisseur. (DSA)
- Diffuseur circulaire tourbillonnaire de sol, avec plaque perforée en tôle d'acier de 6 mm d'épaisseur. (DSA-PR)
- Collecteur et unité à jet hélicoïdal internes fabriqués en tôle d'acier
- Diffuseur circulaire tourbillonnaire de sol, avec plaque et collecte à polycarbonate ABS. Modèle d'induction élevé pour les grands débits d'air. Finition en noir RAL-9005 ou en gris RAL-9006. (DSA-HV)
- Niveaux d'induction très élevés
- Entretien aisé
- Utilisation possible avec plénum de raccordement

Typologie

DSA: Pour charges ponctuelles élevées. **DSA-PR**: Pour charges ponctuelles élevées

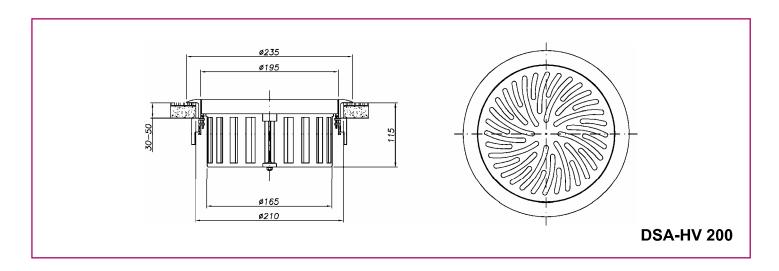
DSA-HV: Pour charges standard.

RÉSISTANCE DU DIFFUSEUR


Modéle	Taille	Charge 1	Charge 2
DSA /	Ø 150	2,9	2,5
DSA-PR	Ø 200	2	2,25
DSA-HV	Ø 200	2,5	2

Résistance en kN

Étude réalisée conformément à la norme EN 13264:2001 sur une surface de 30 x 30 mm².



Types et dimensions DSA

Taille	ØΑ	ØВ	_	C L			L					
Taille	בל	ם ש		1 DIFFUSEUR	2 DIFFUSEURS	3 DIFFUSEURS	4 DIFFUSEURS	MAXIMUN	MINIMUN			
150	190	150	225	500 1 BOUCHE	1000 2 BOUCHES	1500 2 BOUCHES	2000 2 BOUCHES	32	14			
200	240	200	275	Ø 100	Ø 100	Ø 125	Ø 125	32	14			

⁻ Dimensions pour DSA, DSA-PR

Données techniques. Tableau de sélection DSA

Les données techniques relatives au bruit et à la perte de charge se rapportent à un diffuseur DSA sans plénum. Les données techniques du diffuseur avec plénum DSA sont détaillés dans le tableau sans plénum d'ajouter 4 dB (A) au niveau de puissance sonore et une augmentation de la perte de charge un 18%. Les autres valeurs sont équivalentes.

		Diffu	seur de	e sol D	SA			
		Taille		150			200	
	Q	$A_k (m^2)$		0,00495			0,00945	
(m³/h)	(l/s)	ΔT (°C)	-4	-6	-8	-4	-6	-8
30	8,3	h _{0,25} (m)	0,8	0,7	0,6			
		V _k (m/s)		1,7				
		∆P _{est} (Pa)		6				
		L _w - [dB(A)]		<20				
35	9,7	h _{0,25} (m)	0,9	0,8	0,7			
		V _k (m/s)		2,0				
		∆P _{est} (Pa)		8				
		L _w - [dB(A)]		22				
40	11,1	h _{0,25} (m)	1,1	0,9	0,8			
		V _k (m/s)		2,2				
		∆P _{est} (Pa)		11				
		L _w - [dB(A)]		25				
45	12,5	h _{0,25} (m)	1,2	1,0	0,9			
		V _k (m/s)		2,5				
		∆P _{est} (Pa)		13				
		L _w - [dB(A)]		28				
50	13,9	h _{0,25} (m)	1,3	1,2	1,0	0,7	0,6	0,5
		V _k (m/s)		2,8			1,5	
		∆P _{est} (Pa)		17			3	
		L _w - [dB(A)]		31			<20	
60	16,7	h _{0,25} (m)	1,6	1,4	1,2	0,8	0,7	0,6
		V _k (m/s)		3,4			1,8	
		∆P _{est} (Pa)		24			5	
		L _w - [dB(A)]		35			20	
70	19,4	h _{0,25} (m)	1,9	1,6	1,4	0,9	0,8	0,7
		V _k (m/s)		3,9			2,1	
		∆P _{est} (Pa)		33			7	
		L _w - [dB(A)]		39			24	

		Diffu	seur d	e sol D	SA			
			150			200		
(Q	$A_k (m^2)$		0,00495	5		0,00945	
(m³/h)	(l/s)	ΔT (°C)	-4	-6	-8	-4	-6	-8
85	23,6	h _{0,25} (m)	2,3	2,0	1,7	1,1	1,0	0,9
		V _k (m/s)		4,8			2,5	
		∆P _{est} (Pa)		48			10	
		L _w - [dB(A)]		43			29	
100	27,8	h _{0,25} (m)	2,7	2,3	2,0	1,3	1,2	1,0
		V _k (m/s)		5,6			2,9	
		∆P _{est} (Pa)		67			14	
		L _w - [dB(A)]		47			33	
115	31,9	h _{0,25} (m)				1,5	1,3	1,2
		V _k (m/s)					3,4	
		∆P _{est} (Pa)					18	
		L _w - [dB(A)]					36	
130	36,1	h _{0,25} (m)				1,7	1,5	1,3
		V _k (m/s)					3,8	
		∆P _{est} (Pa)					23	
		L _w - [dB(A)]					39	
150	41,7	h _{0,25} (m)				2,0	1,7	1,5
		V _k (m/s)					4,4	
		∆P _{est} (Pa)					31	
		L _w - [dB(A)]					43	
170	47,2	h _{0,25} (m)				2,3	2,0	1,7
		V _k (m/s)					5,0	
		∆P _{est} (Pa)					40	
		L _w - [dB(A)]					46	

Q (m³/h) Débit

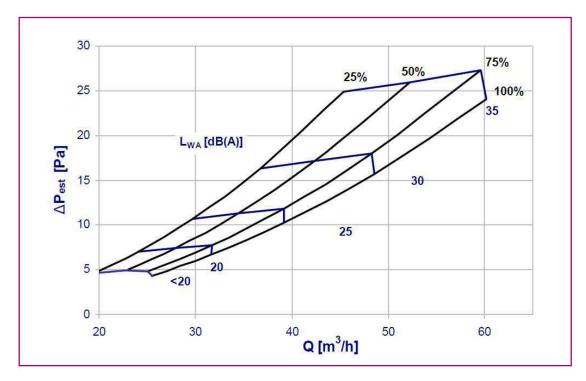
AK (m²) Surface efficace de soufflage

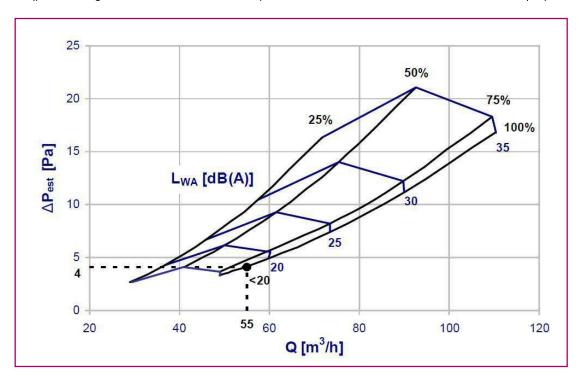
ΔT (°C) Différence entre la température ambiante et la température de soufflage

h_{0,25} (**m**) Portée verticale pour une vitesse de la veine d'air de 0,25 m/s

V_K (m/s) Vitesse réelle de soufflage

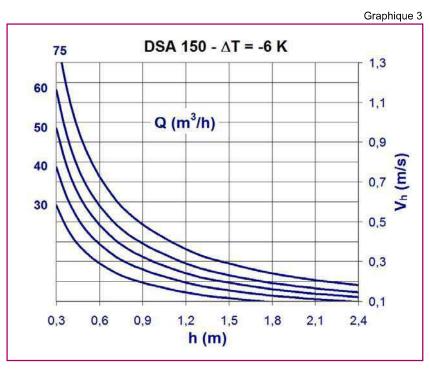
ΔP_{est} (**Pa**) Perte de charge (pression statique)


L_w [dB(A)] Niveau de puissance sonore


Données techniques. Graphiques de sélection DSA

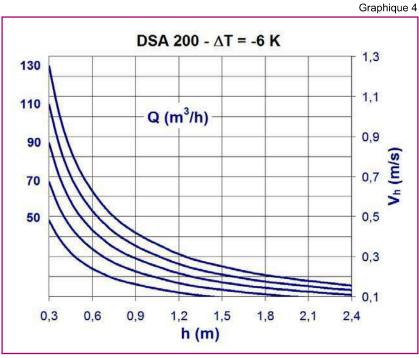
Niveau de puissance sonore % (pourcentage d'ouverture du collecteur)

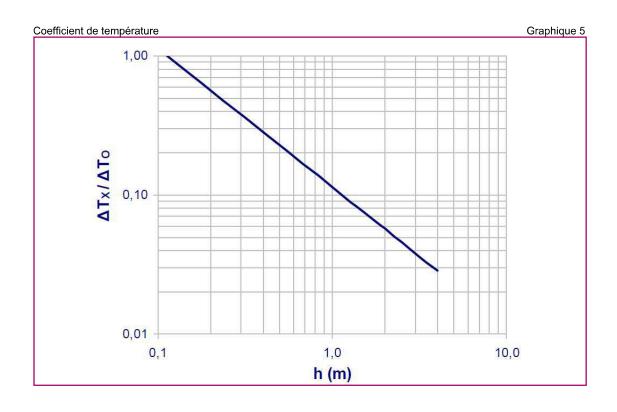
DSA 150 SANS PLÉNUM Graphique 1

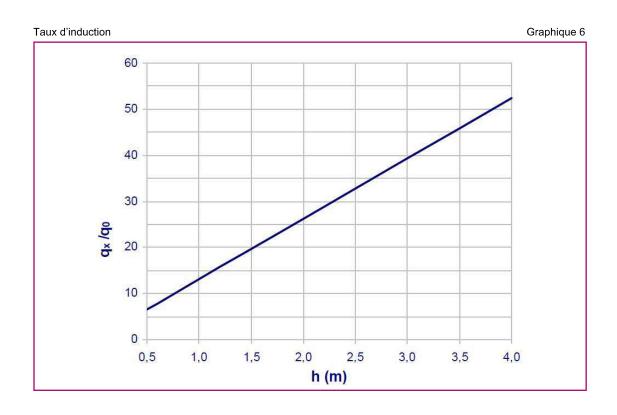

Niveau de puissance sonore % (pourcentage d'ouverture du collecteur) DSA 200 SANS PLÉNUM Graphique 2

Données techniques. Graphiques de sélection DSA

Les graphiques de vitesse de la veine d'air à différentes hauteurs sont étudiés pour une différence entre la température de l'air de soufflage et la température ambiante de -6 K. Pour toute autre différence, il convient d'appliquer les coefficients du tableau ci-dessous dans la formule correspondante.




Tableau de coefficients de correction


ΔT (K)	-4	-6	-8	-10
С	1,15	1	0,87	0,76

$$V_h = V_{h \text{ graphique}} \times C$$

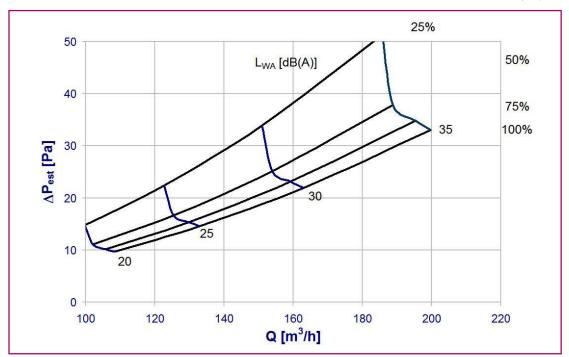
Données techniques. Graphiques de sélection DSA

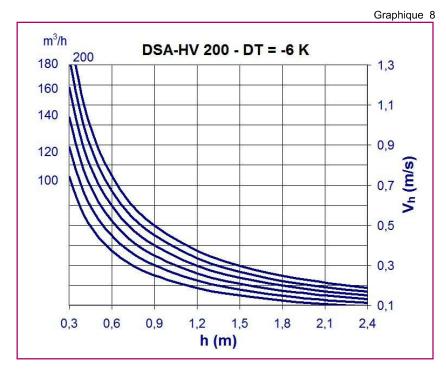
Données techniques. Tableau de sélection DSA-HV

Les données techniques relatives au bruit et à la perte de charge se rapportent à un diffuseur DSA sans plénum. Les données techniques du diffuseur avec plénum DSA sont détaillés dans le tableau sans plénum d'ajouter 4 dB (A) au niveau de puissance sonore et une augmentation de la perte de charge un 18%. Les autres valeurs sont équivalentes.

	Diffu	ıseur de sol	DSA-H	IV	
		Taille		200	
Q		$A_k (m^2)$	0,01587		
(m³/h)	(l/s)	ΔT(°C)	-4	-6	-8
100	27,8	h _{0,25} (m)	1,0	0,9	0,8
		V _k (m/s)	0,25 (/		
		$_{\Delta}P_{est}\left(Pa\right)$		8	
		L _w - [dB(A)]		<20	
120	33,3	h _{0,25} (m)	1,2	1,1	0,9
		V _k (m/s)		2,1	
		$\Delta P_{est}\left(Pa\right)$		12	
		L _w - [dB(A)]		22	
140	38,9	h _{0,25} (m)	1,4	1,2	1,1
		V _k (m/s)	2,5		
		∆P _{est} (Pa)		16	
		L _w - [dB(A)]		26	
160	44,4	h _{0,25} (m)	1,6	1,4	1,2
		V _k (m/s)		2,8	
		$_{\Delta}P_{est}\left(Pa\right)$		21	
		L _w - [dB(A)]		30	
180	50,0	h _{0,25} (m)	1,8	1,6	1,4
		V _k (m/s)	3,2		
		∆P _{est} (Pa)	27		
		L _w - [dB(A)]	32		
200	55,6	h _{0,25} (m)	2,0	1,8	1,6
		V _k (m/s)		3,5	
		$\Delta P_{\rm est}$ (Pa)		33	
		L _w - [dB(A)]		35	

Q (m³/h) Débit
 AK (m²) Surface efficace de soufflage
 ΔT (°C) Différence entre la température ambiante et la température de soufflage
 h_{0,25} (m) Portée verticale pour une vitesse de la veine d'air de 0,25 m/s
 V_K (m/s) Vitesse réelle de soufflage
 ΔP_{est} (Pa) Perte de charge (pression statique)
 L_w [dB(A)] Niveau de puissance sonore




Données techniques. Graphiques de sélection DSA-HV

Les graphiques de vitesse de la veine d'air à différentes hauteurs sont étudiés pour une différence entre la température de l'air de soufflage et la température ambiante de -6 K. Pour toute autre différence, il convient d'appliquer les coefficients du tableau ci-dessous dans la formule correspondante. Les graphiques de coefficient de température et taux d'induction sont similaires à le modèle DSA qui figurant à la page 9.

Niveau de puissance sonore % (pourcentage d'ouverture du collecteur)

DSA-HV 200 SANS PLÉNUM Graphique 7

ΔT (K)	-4	-6	-8	-10
С	1,15	1	0,87	0,76

Données techniques. Tableau de sélection DSA-PR

Les données techniques relatives au bruit et à la perte de charge se rapportent à un diffuseur DSA sans plénum. Les données techniques du diffuseur avec plénum DSA sont détaillés dans le tableau sans plénum d'ajouter 4 dB (A) au niveau de puissance sonore et une augmentation de la perte de charge un 18%. Les autres valeurs sont équivalentes.

		Diffuse	ur de	sol DS	A-PR			
	150			200				
Q		$A_k (m^2)$		0,00495	,		0,00945	
(m³/h)	(l/s)	ΔT (°C)	-4	-6	-8	-4	-6	-8
30	8,3	h _{0,25} (m)	1,1	0,9	0,8			
		V _k (m/s)		2,6				
		∆P _{est} (Pa)		14				
		L _w - [dB(A)]		24				
35	9,7	h _{0,25} (m)	1,3	1,0	0,9			
		V _k (m/s)		3,0				
		∆P _{est} (Pa)		20				
		L _w - [dB(A)]		27				
40	11,1	h _{0,25} (m)	1,5	1,2	1,1	0,7	0,6	0,5
		V _k (m/s)		3,5			1,8	
		∆P _{est} (Pa)		25			5	
		L _w - [dB(A)]		30			<20	
45	12,5	h _{0,25} (m)	1,6	1,3	1,2	0,8	0,7	0,6
		V _k (m/s)		3,9			2,0	
		∆P _{est} (Pa)		32			6	
		L _w - [dB(A)]		33			<20	
50	13,9	h _{0,25} (m)	1,8	1,5	1,4	0,9	0,8	0,7
		V _k (m/s)		4,3			2,2	
		∆P _{est} (Pa)		40			8	
		L _w - [dB(A)]		36			21	
60	16,7	h _{0,25} (m)	2,2	1,8	1,6	1,1	1,0	8,0
		V _k (m/s)		5,2			2,7	
		∆P _{est} (Pa)		57			12	
		L _w - [dB(A)]		40			25	
70	19,4	h _{0,25} (m)	2,6	2,1	1,9	1,3	1,1	0,9
		V _k (m/s)		6,1			3,1	
		∆P _{est} (Pa)		78			16	
		L _w - [dB(A)]		44			29	

		Diffuse	ır de s	ol DSA	\-PR			
		Taille		150			200	
(Q	$A_k (m^2)$		0,00495	i	0,00945		
(m³/h)	(l/s)	ΔT (°C)	-4	-6	-8	-4	-6	-8
80	22,2	h _{0,25} (m)	2,9	2,4	2,2	1,5	1,3	1,1
		V _k (m/s)		6,9			3,6	
		∆P _{est} (Pa)		102			21	
		L _w - [dB(A)]		47			32	
90	25,0	h _{0,25} (m)				1,7	1,5	1,2
		V _k (m/s)					4,0	
		∆P _{est} (Pa)					26	
		L _w - [dB(A)]					35	
100	27,8	h _{0,25} (m)				1,8	1,6	1,3
		V _k (m/s)					4,5	
		∆P _{est} (Pa)					32	
		L _w - [dB(A)]					38	
125	34,7	h _{0,25} (m)				2,3	2,0	1,7
		V _k (m/s)					5,6	
		∆P _{est} (Pa)					50	
		L _w - [dB(A)]					43	
150	41,7	h _{0,25} (m)				2,8	2,4	2,0
		V _k (m/s)					6,7	
		∆P _{est} (Pa)					72	
		L _w - [dB(A)]					48	

Q (m³/h) Débit

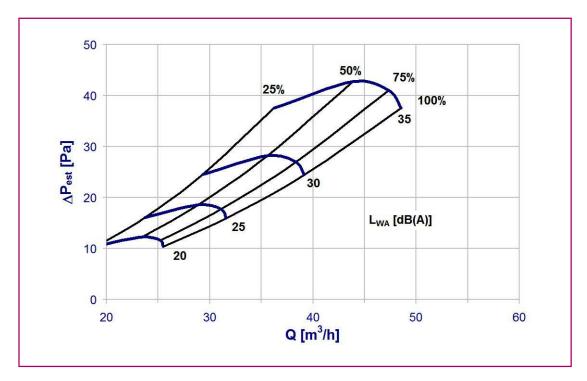
AK (m²) Surface efficace de soufflage

ΔT (°C) Différence entre la température ambiante et la température de soufflage

h_{0,25} (m) Portée verticale pour une vitesse de la veine d'air de 0,25 m/s

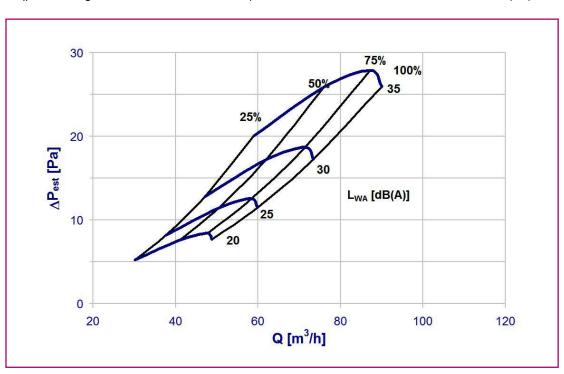
V_K (m/s) Vitesse réelle de soufflage

ΔP_{est} (**Pa**) Perte de charge (pression statique)


L_w [dB(A)] Niveau de puissance sonore

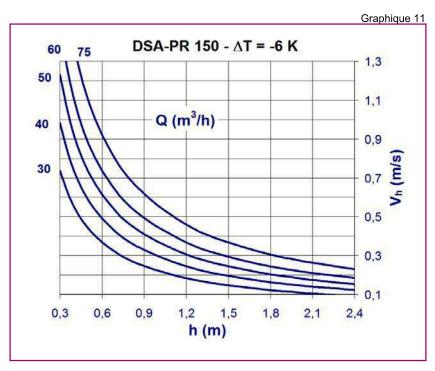
Données techniques. Graphiques de sélection DSA-PR

Niveau de puissance sonore % (pourcentage d'ouverture du collecteur)


DSA-PR 150 SANS PLÉNUM Graphique 9

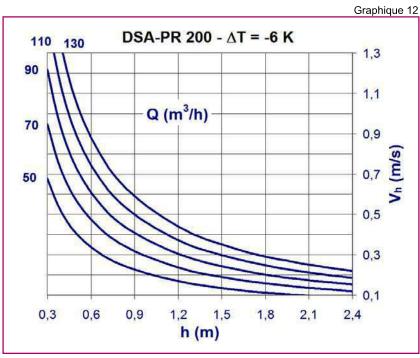
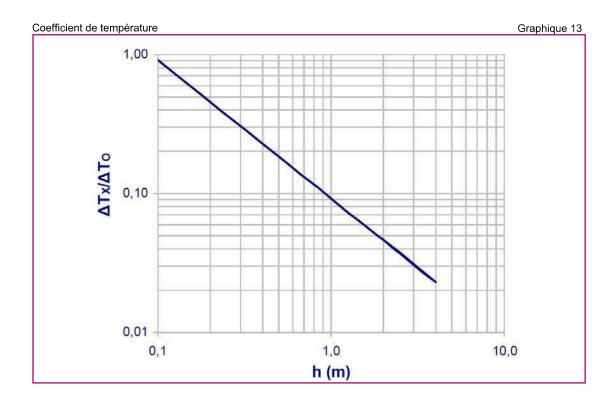
Niveau de puissance sonore % (pourcentage d'ouverture du collecteur)

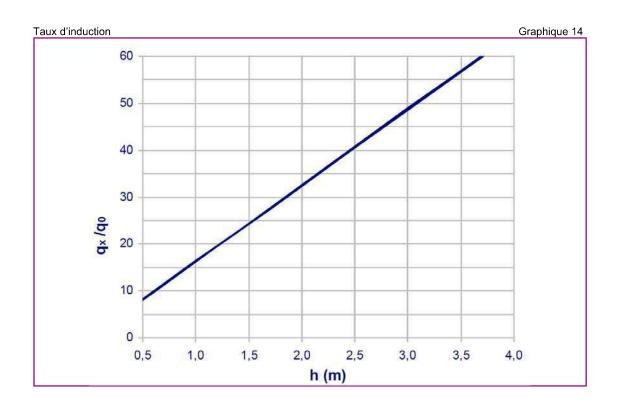
DSA-PR 200 SANS PLÉNUM


Graphique 10

Données techniques. Graphiques de sélection DSA-PR

Les graphiques de vitesse de la veine d'air à différentes hauteurs sont étudiés pour une différence entre la température de l'air de soufflage et la température ambiante de -6 K. Pour toute autre différence, il convient d'appliquer les coefficients du tableau ci-dessous dans la formule correspondante.


Tableau de coefficients de correction

ΔT (K)	-4	-6	-8	-10
С	1,15	1	0,87	0,76

Données techniques. Graphiques de sélection DSA-PR

Exemple de sélection DSA

Pour sélectionner l'élément correspondant a ce type de diffusion, a savoir diffusion au niveau du sol avec des écarts thermiques inférieurs ou egaux a ± 6 °C, il est recommande que la vitesse réelle de sortie d'air du diffuseur (V_K) ne dépasse pas 1,5-2 m/s afin de ne pas produire de courants d'air désagréables dans la zone d'occupation (>0,25 m/s); sobre surtout lorsque ce type de diffuseur est installe sous des fauteuils (dans un auditorium, par exemple).

Les lignes qui suivent proposent un exemple qui permet d'expliquer la méthodologie de sélection a l'aide des graphiques:

Données de conception:

Auditorium de 410 fauteuils. Débit total de soufflage dans la zone des fauteuils de 22500 m³/h. Température de soufflage de 19 °C et température ambiante de 23 °C. Installation d'un diffuseur par fauteuil, avec débit par diffuseur de 55 m³/h.

Résultats:

En partant du débit par diffuseur (55 m 3 /h) et en prenant en compte le critère de sélection susmentionné pour ce type d'installations (V_k < 2 m/s), le tableau de sélection (page 6) définit le type DSA-200 comme le diffuseur approprié.

Pour obtenir le niveau de puissance sonore et la perte de charge de ce type de diffuseur, il suffit de consulter le graphique de sélection 2 :

Perte de charge : 4 Pa

Niveau de puissance sonore : < 20 dB(A)

Pour obtenir la vitesse de la veine d'air a la hauteur du siège (environ 0,5 m), il suffit de consulter le graphique de sélection 4:

Vitesse corrigée " V_h " à une hauteur "h" de 0,5 m avec $\Delta T = -4$ °C:

$$V_h = 0.32 \times 1.15 = 0.37 \text{ m/s}$$

Codification et exemple

La codification décrit le type demandé par le client.

	DSA DSA-PR DSA-HV	Diffuseur de sol Diffuseur de sol, avec plaque perforée Diffuseur de sol (polycarbonate ABS)
ſ	Ø150 Ø200	Taille du diffuseur Taille du diffuseur
Γ	ØP	Plénum de raccordement
	- RAL	Fabrication en tôle d'acier Finitions RAL disponibles sur demande

Exemple de codification:

DSA-200-P

Diffuseur circulaire en tôle d'acier de 200 mm de diamètre, soufflage par jet hélicoïdal, avec plénum.

Diffuseur multiple de contremarche à jet hélicoïdal DF-CP-MT

DF-CP-MT

Description

Les diffuseurs multiples de contremarche à jet hélicoïdal de la série DF-CP-MT sont composés d'une plaque frontale rectangulaire qui intègre de 2 à 6 microdiffuseurs en mise en oeuvre standard.

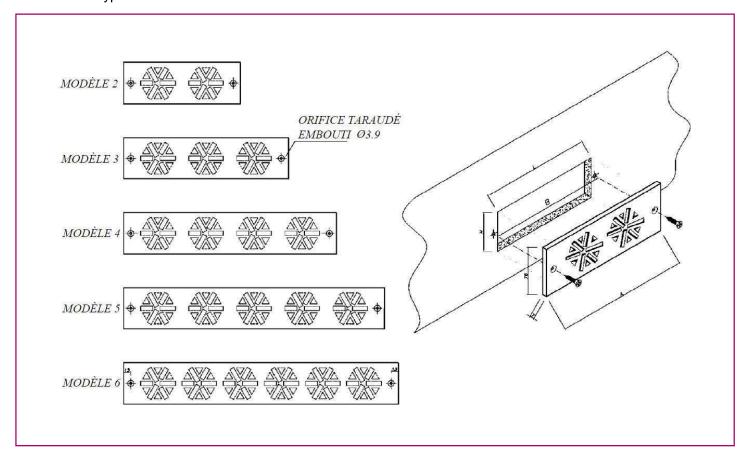
Ils sont fabriqués en tôle d'acier peint en noir (RAL-9005) pour les finitions standard. Un plénum de raccordement (piquage latéral ou frontal) en tôle d'acier galvanisé peut être intégré.

Ces diffuseurs se distinguent par leur aspect hautement esthétique. Sur demande, ils peuvent être peints en d'autres couleurs afin de s'adapter aux besoins décoratifs.

Applications

Les diffuseurs de la série DF-CP-MT sont conçus pour la climatisation de théâtres, d'auditoriums, de salles de cinéma, etc., leur profil bas permettant de les placer dans les contremarches de hauteur réduite.

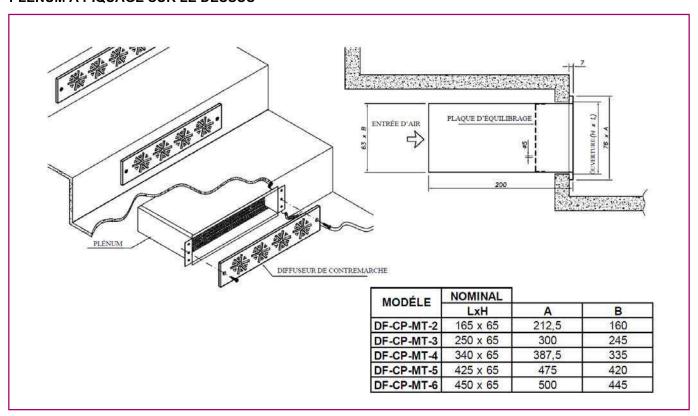
Lorsqu'ils sont utilisés dans les salles citées auparavant, un diffuseur par siège est généralement installé, ce qui génère un microclimat individuel garantissant l'apport d'air de ventilation nécessaire à chaque personne.


La distance entre la plaque de diffusion et les jambes de la personne étant extrêmement faible, il est recommandé de travailler avec une différence de température (soufflage-ambiante) maximale de \pm 6 °C pour éviter les courants d'air désagréables.

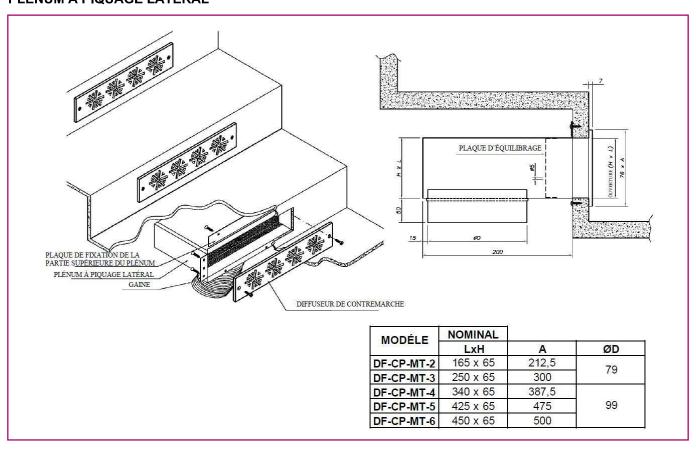
Types et dimensions DF-CP-MT

Les diffuseurs de la série DF-CP-MT peuvent être fabriqués par groupes de 2, 3, 4, 5 ou 6 microdiffuseurs à jet hélicoïdal. Le diffuseur peut également être fourni avec un plénum sur simple demande.

Les différents types de diffuseur sont les suivants:



MODÉLE	NOMINAL		
WOOLLE	LxH	Α	В
DF-CP-MT-2	165 x 65	212,5	186,5
DF-CP-MT-3	250 x 65	300	274
DF-CP-MT-4	340 x 65	387	361,5
DF-CP-MT-5	425 x 65	475	449
DF-CP-MT-6	450 x 65	500	474



Types et dimensions DF-CP-MT

PLÉNUM À PIQUAGE SUR LE DESSUS

PLÉNUM À PIQUAGE LATÉRAL

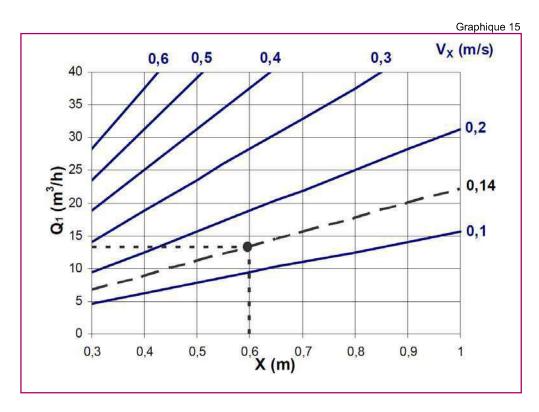

Données techniques DF-CP-MT

TABLEAU DE SÉLECTION EN FONCTION DU NIVEAU SONORE:

Le débit d'air et la perte de charge (valeur entre parenthèses) de chaque taille de diffuseur sont déterminés en fonction du niveau sonore souhaité.

DÉBIT – NIVEAU SONORE – PERTE DE CHARGE						
DF-CP-MT	m³/h (Pa)					
DI -CF-WII	25 dB(A)	30 dB(A)	35 dB(A)	40 dB(A)	45 dB(A)	
2	26 (15)	32 (22)	39 (32)	48 (48)	59 (72)	
3	37 (13)	45 (19)	55 (29)	67 (42)	82 (62)	
4	47 (12)	57 (17)	70 (26)	85 (38)	104 (56)	
5	56 (11)	69 (16)	84 (24)	102 (35)	125 (52)	
6	65 (10)	80 (15)	98 (23)	119 (33)	145 (49)	

Le graphique ci-dessous permet d'obtenir la vitesse de l'air (d'un microdiffuseur) mesurée à 100 mm du sol en fonction de la distance à celui-ci. La valeur de vitesse obtenue sur le graphique doit ensuite être multipliée par celle du tableau 2 en fonction du nombre d'éléments de la plaque.

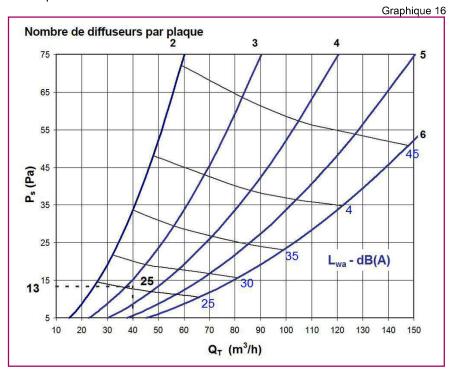
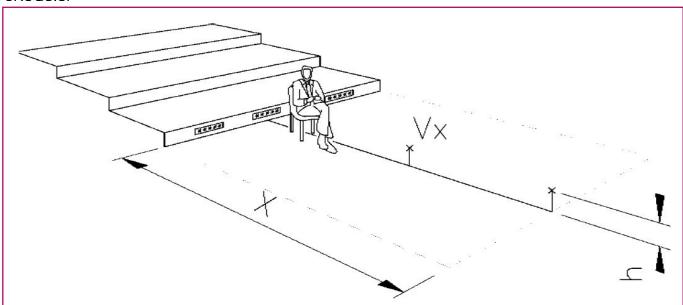

Nombre de microdiffuseurs	2	3	4	5	5
V _x	1,41	1,73	2	2,24	2,45

Tableau 2: valeurs de correction de 2 à 6 microdiffuseurs



Données techniques DF-CP-MT

Le graphique ci-dessous permet d'obtenir le niveau sonore et la perte de charge par plaque en tenant compte du nombre de diffuseurs dont elle est composée.

CROQUIS:

LÉGENDE:

- **Q**₁ Débit de soufflage par élément de diffusion en m³/h.
- **Q**_T Débit de soufflage par plaque en m³/h
- V_x Vitesse d'un élément de diffusion à la distance X en m/s
- X Distance au diffuseur en m
- h Hauteur du point de mesure en m par rapport au sol
- **Ps** Perte de charge de la plaque en Pa
- dB(A) Niveau de puissance sonore de la plaque

Exemple de sélection DF-CP-MT

Le tableau de sélection et le graphique qui figurent dans ce catalogue pour les différents types existants se rapportent aux diffuseurs sans plénum et permettent d'obtenir les paramètres ci-dessous à partir d'un débit de soufflage par plaque de diffuseurs:

- Perte de charge et niveau de puissance sonore produits dans le diffuseur
- Vitesse à une distance déterminée, mesurée à une hauteur de 0,1 m par rapport au sol

Explication de la méthodologie à travers un exemple:

Données de départ

Des diffuseurs de contremarche **DF-CP-MT** doivent être installés dans un théâtre de 200 fauteuils. Le débit total à souffler par ce type de diffuseurs est de 8 000 m³/h, soit 40 m³/h par diffuseur. Le diffuseur **DF- CP-MT-3** est sélectionné et installé sur la contremarche.

Hauteur de montage par rapport au sol : h = 0.1 mDistance au diffuseur (mesure de vitesse) : X = 0.6 mHauteur du point de mesure par rapport au sol : $h_1 = 0.1 \text{ m}$

Débit par microdiffuseur : $Q_1 = 13.3 \text{ m}^3/\text{h}$

Résultats

En consultant le graphique de puissance sonore et le graphique de vitesses, puis en appliquant le facteur de correction par nombre de microdiffuseurs, on obtient:

Perte de charge totale : 13 Pa

Niveau de puissance sonore : 25 dB(A)

Vitesse corrigée à une distance de 0,6 m du diffuseur : V_x = 0,24 m/s

Codification et exemple

La codification décrit le type demandé par le client.

DF-CP-MT	Diffuseur multiple de contremarche à jet hélicoïdal
26	Nombre de microdiffuseurs
PS PL	Plénum à piquage sur le dessus Plénum à piquage latéral
RAL 9005	Finitions standard noir satiné

Exemple de codification:

DF-CP-MT-5-Ral 9005 satiné

Diffuseur multiple de contremarche à jet hélicoïdal, composé de 5 microdiffuseurs, pour montage standard avec vis, peint de couleur RAL-9005.

CE CATALOGUE EST PROTÉGÉ PAR LE DROIT DE LA PROPRIÉTÉ INTELLECTUELLE.

Toute reproduction, même partielle, par un moyen quelconque, y compris électronique, est interdite sans l'autorisation écrite préalable de KOOLAIR, S.L.

www.koolair.com